Jafar
|
An implementation of the RANSAC algorithm for robust fitting of models to data. More...
An implementation of the RANSAC algorithm for robust fitting of models to data.
Definition at line 16 of file ransac.hpp.
#include <ransac.hpp>
Public Types | |
typedef void(* | RANSAC_fit_functor )(const ublas::matrix< NUMTYPE > &data, const std::vector< size_t > &indices, ublas::vector< ublas::matrix< NUMTYPE > > &fit_models) |
The type of the fitting function passed to jafar::jmath::ransac. | |
typedef void(* | RANSAC_distance_functor )(const ublas::matrix< NUMTYPE > &data, const ublas::vector< ublas::matrix< NUMTYPE > > &test_models, NUMTYPE distance_threshold, unsigned int &best_model_index, std::vector< size_t > &inlier_indices) |
The type of the distance function passed to jafar::jmath::ransac. | |
typedef bool(* | RANSAC_degenerate_functor )(const ublas::matrix< NUMTYPE > &data, const std::vector< size_t > &indices) |
The type of the function passed to mrpt::math::ransac. | |
Static Public Member Functions | |
static bool | execute (const ublas::matrix< NUMTYPE > &data, RANSAC_fit_functor fit_func, RANSAC_distance_functor dist_func, RANSAC_degenerate_functor degen_func, const NUMTYPE distance_threshold, const unsigned int min_size_samples_to_fit, std::vector< size_t > &out_best_inliers, ublas::matrix< NUMTYPE > &out_best_model, const NUMTYPE prob_good_sample=0.999, const size_t max_iter=200000) |
execution task |
static bool jafar::jmath::RANSAC< NUMTYPE >::execute | ( | const ublas::matrix< NUMTYPE > & | data, |
RANSAC_fit_functor | fit_func, | ||
RANSAC_distance_functor | dist_func, | ||
RANSAC_degenerate_functor | degen_func, | ||
const NUMTYPE | distance_threshold, | ||
const unsigned int | min_size_samples_to_fit, | ||
std::vector< size_t > & | out_best_inliers, | ||
ublas::matrix< NUMTYPE > & | out_best_model, | ||
const NUMTYPE | prob_good_sample = 0.999 , |
||
const size_t | max_iter = 200000 |
||
) | [inline, static] |
execution task
data | A DxN matrix with all the observed data. D is the dimensionality of data points and N the number of points. |
This implementation is highly inspired on Peter Kovesi's MATLAB scripts (http://www.csse.uwa.edu.au/~pk). |
Definition at line 44 of file ransac.hpp.
References JFR_ASSERT, and JFR_DEBUG.
Generated on Wed Oct 15 2014 00:37:40 for Jafar by doxygen 1.7.6.1 |